Implement a trie with insert, search, and startsWith methods.Note:You may assume that all inputs are consist of lowercase letters a-z.
参考百度百科:
a trie, also called digital tree and sometimes or prefix tree (as they can be searched by prefixes)
The time complexity to insert and to search is O(m), where m is the length of the string.
标准Trie树的应用和优缺点
(1) 全字匹配:确定待查字串是否与集合的一个单词完全匹配。如上代码fullMatch()。
(2) 前缀匹配:查找集合中与以s为前缀的所有串。
注意:Trie树的结构并不适合用来查找子串。这一点和前面提到的PAT Tree以及后面专门要提到的Suffix Tree的作用有很大不同。
优点: 查找效率比与集合中的每一个字符串做匹配的效率要高很多。在o(m)时间内搜索一个长度为m的字符串s是否在字典里。Predictable O(k) lookup time where k is the size of the key
缺点:标准Trie的空间利用率不高,可能存在大量结点中只有一个子结点,这样的结点绝对是一种浪费。正是这个原因,才迅速推动了下面所讲的压缩trie的开发。
什么时候用Trie?
It all depends on what problem you're trying to solve. If all you need to do is insertions and lookups, go with a hash table. If you need to solve more complex problems such as prefix-related queries, then a trie might be the better solution.
像word search II就是跟前缀有关,如果dfs发现当前形成的前缀都不在字典中,就没必要再搜索下去了,所以用trie不用hashSet
1 class TrieNode { 2 // Initialize your data structure here. 3 int num; //How many words go through this TrieNode 4 TrieNode[] son; //collection of sons 5 boolean isEnd; 6 char val; 7 8 public TrieNode() { 9 this.num = 0;10 this.son = new TrieNode[26];11 this.isEnd = false;12 }13 }14 15 public class Trie {16 private TrieNode root;17 18 public Trie() {19 root = new TrieNode();20 }21 22 // Inserts a word into the trie.23 public void insert(String word) {24 if (word==null || word.length()==0) return;25 char[] arr = word.toCharArray();26 TrieNode node = this.root;27 for (int i=0; i